USGS - science for a changing world

South Atlantic Water Science Center - North Carolina Office

South Atlantic WSC Home Data Projects Publications Drought Floods Media About Us Contact [an error occurred while processing this directive]   Internal

Picture of the main North Carolina Water Science Center office.

PUBLICATIONS

Annual Water Data Report

USGS Publications Warehouse

USGS IN YOUR STATE

USGS Water Science Centers are located in each state.

There is a USGS Water Science Center office in each State. Washington Oregon California Idaho Nevada Montana Wyoming Utah Colorado Arizona New Mexico North Dakota South Dakota Nebraska Kansas Oklahoma Texas Minnesota Iowa Missouri Arkansas Louisiana Wisconsin Illinois Mississippi Michigan Indiana Ohio Kentucky Tennessee Alabama Pennsylvania West Virginia Georgia Florida Caribbean Alaska Hawaii New York Vermont New Hampshire Maine Massachusetts South Carolina North Carolina Rhode Island Virginia Connecticut New Jersey Maryland-Delaware-D.C.

Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina

Open-File Report 90-372
By G.L. Giese, J.L. Eimers, and R.W. Coble


Abstract

A 3-D finite difference digital model was used to simulate groundwater flow in the 25,000 sq mi aquifer system of the North Carolina Coastal Plain. The model was developed from a geohydrologic framework that is based on an alternating sequence of 10 aquifers and 9 confining units, which comprise a seaward-thickening wedge of sediments that form the Coastal Plain aquifer system in North Carolina. The model was calibrated by comparing observed and simulated water levels. The maximum transmissivity of an individual aquifer in the calibrated model is 200,000 sq ft/d in a part of the Castle Hayne aquifer, which is composed predominately of limestone. The maximum simulated vertical hydraulic conductivity in a confining unit was 2.5 ft/d in a part of the confining unit overlying the upper Cape Fear aquifer. Analysis indicated the model is highly sensitive to changes in transmissivity and leakage near pumping centers; away from pumping centers, the model is only slightly sensitive to changes in transmissivity but is moderately sensitive to changes in leakance. Recharge from precipitation to the surficial aquifer ranges from about 12 in/yr in areas having clay at the surface, to about 20 in/yr in areas having sand at the surface. Most of this recharge moves laterally to streams, with only about 1 in/yr moving down to the confined parts of the aquifer system. Groundwater level declines, which are the result of water taken from storage, are extensive in some area and minimal in others. Water level declines exceeding 100 ft have occurred in the Beaufort County area because of withdrawals for a mining operation and water supplies for a chemical plant. Head declines have been less than 10 ft in the shallow surficial and Yorktown aquifers and in the updip parts of the major confined aquifers distant from areas of major withdrawals. A water-budget analysis using the model simulations indicates that much of the water removed from the groundwater system by pumping ultimately is made up by a reduction in water leaving the aquifer system, which discharges to streams as base flow.


Citation:

Giese, G.L., Eimers, J.L., and Coble, R.W., 1991, Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina: U.S. Geological Survey Open-File Report 90-372, 178 p.


For more information, contact To order printed copies, contact
North Carolina Water Science Center
U.S. Geological Survey
3916 Sunset Ridge Road
Raleigh, North Carolina 27607
(919) 571-4000
E-mail
U.S. Geological Survey
Information Services
Box 25286, Federal Center
Denver, CO 80225
 
1-888-ASK USGS

USGS Home Water Climate Change Core Science Ecosystems Energy and Minerals Env. Health Hazards

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: https://nc.water.usgs.gov/reports/abstracts/ofr90372.html
Page Contact Information: North Carolina Web Development Team
Page Last Modified: Tuesday, 06-Dec-2016 10:43:12 EST