U.S. Geological Survey

Effects of land use on water quality and transport of selected constituents in streams in Mecklenburg County, North Carolina, 1994-98

WRI 01-4118
By G.M. Ferrell


Complete report in PDF (95 pages, 8,961 KB)


Abstract

Transport rates for total solids, total nitrogen, total phosphorus, biochemical oxygen demand, chromium, copper, lead, nickel, and zinc during 1994.98 were computed for six stormwater-monitoring sites in Mecklenburg County, North Carolina. These six stormwater-monitoring sites were operated by the Mecklenburg County Department of Environmental Protection, in cooperation with the City of Charlotte, and are located near the mouths of major streams. Constituent transport at the six study sites generally was dominated by nonpoint sources, except for nitrogen and phosphorus at two sites located downstream from the outfalls of major municipal wastewater-treatment plants.

To relate land use to constituent transport, regression equations to predict constituent yield were developed by using water-quality data from a previous study of nine stormwater-monitoring sites on small streams in Mecklenburg County. The drainage basins of these nine stormwater sites have relatively homogeneous land-use characteristics compared to the six study sites. Mean annual construction activity, based on building permit files, was estimated for all stormwater-monitoring sites and included as an explanatory variable in the regression equations. These regression equations were used to predict constituent yield for the six study sites. Predicted yields generally were in agreement with computed yields. In addition, yields were predicted by using regression equations derived from a national urban water-quality database. Yields predicted from the regional regression equations generally were about an order of magnitude lower than computed yields.

Regression analysis indicated that construction activity was a major contributor to transport of the constituents evaluated in this study except for total nitrogen and biochemical oxygen demand. Transport of total nitrogen and biochemical oxygen demand was dominated by point-source contributions. The two study basins that had the largest amounts of construction activity also had the highest total solids yields (1,300 and 1,500 tons per square mile per year). The highest total phosphorus yields (3.2 and 1.7 tons per square mile per year) attributable to nonpoint sources also occurred in these basins. Concentrations of chromium, copper, lead, nickel, and zinc were positively correlated with total solids concentrations at most of the study sites (Pearson product-moment correlation >0.50). The site having the highest median concentrations of chromium, copper, and nickel also was the site having the highest computed yield for total solids.

Table of Contents


Download the free PDF reader.


For more information, contact To order printed copies, contact
North Carolina District
U.S. Geological Survey
3916 Sunset Ridge Road
Raleigh, North Carolina 27607
(919) 571-4044
E-mail
U.S. Geological Survey
Information Services
Box 25286, Federal Center
Denver, CO 80225
 
1-888-ASK USGS

Return to the North Carolina District Home Page


Last update: Tuesday, December 6 2016, 01:08:51 PM
URL: http://nc.water.usgs.gov/reports/wri014118/index.htm