USGS - science for a changing world

South Atlantic Water Science Center - North Carolina Office

South Atlantic WSC Home Data Projects Publications Drought Floods Media About Us Contact

Picture of the main North Carolina Water Science Center office.


Annual Water Data Report

USGS Publications Warehouse


USGS Water Science Centers are located in each state.

There is a USGS Water Science Center office in each State. Washington Oregon California Idaho Nevada Montana Wyoming Utah Colorado Arizona New Mexico North Dakota South Dakota Nebraska Kansas Oklahoma Texas Minnesota Iowa Missouri Arkansas Louisiana Wisconsin Illinois Mississippi Michigan Indiana Ohio Kentucky Tennessee Alabama Pennsylvania West Virginia Georgia Florida Caribbean Alaska Hawaii New York Vermont New Hampshire Maine Massachusetts South Carolina North Carolina Rhode Island Virginia Connecticut New Jersey Maryland-Delaware-D.C.

Lake Hickory, North Carolina-- Analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics, 1993-94

Water-Resources Investigations Report 98-4149
By J.D. Bales and M.J. Giorgino

Full Report (PDF, 71 pages, 20 Mb)


From January 1993 through March 1994, circulation patterns and water- quality characteristics in Lake Hickory varied seasonally and were strongly influenced by inflows from Rhodhiss Dam. The upper, riverine portion of Lake Hickory was unstratified during much of the study period. Downstream from the headwaters to Oxford Dam, Lake Hickory thermally stratified during the summer of 1993. During stratification, releases from Rhodhiss Dam plunged beneath the warmer surface waters of Lake Hickory and moved through the reservoir as interflow. During fall and winter, Lake Hickory was characterized by alternating periods of mixing and weak stratification.

Water-quality conditions in the headwaters of Lake Hickory were largely driven by conditions in water being released from Rhodhiss Dam. In general, water clarity increased, and concentrations of suspended solids, phosphorus, and summertime chlorophyll a decreased in a downstream direction from the headwaters of Lake Hickory to Oxford Dam. Two chlorophyll a samples from the upper portion of Lake Hickory exceeded the North Carolina water-quality standard of 40 micrograms per liter during the investigation. Downstream from the headwaters, dissolved oxygen was rapidly depleted from Lake Hickory bottom waters beginning in May 1993, and anoxic conditions persisted in the hypolimnion throughout the summer. During summer stratification, concentrations of nitrite plus nitrate, ammonia, and orthophosphate were low in the epilimnion, but concentrations of ammonia near the bottom of the reservoir increased as the hypolimnion became anoxic.

Concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in only one of 60 samples collected from Lake Hickory. In contrast, concentrations of fecal coliform bacteria exceeded 200 colonies per 100 milliliters in 40 percent of samples collected from the Upper Little River, and in 60 percent of samples collected from the Middle Little River, two tributaries to Lake Hickory.

Load estimates for the period April 1993 through March 1994 indicated that releases from Rhodhiss Dam accounted for most of the suspended solids, nitrogen, and phosphorus entering the headwaters of Lake Hickory. Loads of nitrogen and phosphorus from point-source discharges were potentially important, but loads of suspended solids from these discharges were insignificant relative to other sources.

The CE-QUAL-W2 model was applied to Lake Hickory from the U.S. Highway 321 bridge to Oxford Dam-a distance of 22 kilometers-and was calibrated by using data collected from April 1993 through March 1994. During the simulation period, measured water levels varied a total of 1.14 meters, and water temperatures ranged from 4 to 31 degrees Celsius. The calibrated model provided good agreement between measured and simulated water levels at Oxford Dam. Likewise, simulated water temperatures were generally within 1 degree Celsius of measured values; however, water temperatures were oversimulated for the fall of 1993. Simulated dissolved oxygen concentrations generally agreed with measurements; however, the model tended to oversimulate dissolved oxygen concentrations during the late summer and early fall. There was good agreement between simulated and measured frequency of occurrence of dissolved oxygen concentrations less than 4 milligrams per liter.

Simulations of tracer dye releases demonstrated the effects of stratification on dilution and rate of transport in Lake Hickory. Simulations were made of the effects of changes in nutrient loads from inflows and from bottom sediments. A simulated 30-percent reduction in inflow concentrations of orthophosphate, ammonia, and nitrate at the U.S. Highway 321 bridge delayed the initial springtime pulse of algal growth by about 2 weeks, but had little effect on dissolved oxygen concentrations. Likewise, a reduction in the release rate of orthophosphate and ammonia from bottom sediments had very little effect on simulated algae and dissolved oxygen concentrations. To simulate the effects of shoreline development on Lake Hickory water quality, concentrations of orthophosphate, ammonia, and nitrate in Snow Creek were increased to levels representative of streams draining developed areas in Charlotte, N.C. Maximum simulated algae concentrations increased about 100 percent relative to current conditions, indicating that Lake Hickory may be sensitive to increased nutrient loads into the middle reaches of the reservoir.


Bales, J.D., and Giorgino, M.J., 1998, Lake Hickory, North Carolina-Analysis of ambient conditions and simulation of hydrodynamics, constituent transport, and water-quality characteristics, 1993-94: U.S. Geological Survey Water-Resources Investigations Report 98-4149, 62 p.

For more information, contact
North Carolina Water Science Center
U.S. Geological Survey
3916 Sunset Ridge Road
Raleigh, North Carolina 27607
(919) 571-4000

USGS Home Water Climate Change Core Science Ecosystems Energy and Minerals Env. Health Hazards

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: North Carolina Web Development Team
Page Last Modified: Tuesday, 06-Dec-2016 10:44:57 EST