
Abstract
Model estimates of impervious area as a function of land-
cover area may be biased and imprecise because of errors in
the land-cover classification. This investigation of the effects
of land-cover misclassification on impervious surface models
that use National Land Cover Data (NLCD) evaluates the
consequences of adjusting land-cover within a watershed to
reflect uncertainty assessment information. Model validation
results indicate that using error-matrix information to adjust
land-cover values used in impervious surface models does
not substantially improve impervious surface predictions.
Validation results indicate that the resolution of the land-
cover data (Level I and Level II) is more important in
predicting impervious surface accurately than whether the
land-cover data have been adjusted using information in the
error matrix. Level I NLCD, adjusted for land-cover misclassi-
fication, is preferable to the other land-cover options for use
in models of impervious surface. This result is tied to the
lower classification error rates for the Level I NLCD.

Introduction
Urbanization often results in land being converted from a
condition that is permeable by water to one that is imper-
meable, or impervious, to water. An increase in impervious
surface, in turn, adversely affects terrestrial and aquatic
environments. Negative effects may begin to occur at levels
as low as 10 percent imperviousness overall in the watershed
(Schueler, 1994; Arnold and Gibbons, 1996; Barnes et al.,
2000; American Planning Association, 2002). A report on the
effects of impervious surfaces in watersheds of the Chesa-
peake Bay (Barnes et al., 2000) indicates that development,
in general, and impervious surface, in particular, affect water
quantity (e.g., decrease in depression storage (Novotny and
Chesters, 1981)), stream flashiness (McMahon et al., 2003),
water quality (e.g., conventional (Frenzel and Couvillion,
2002) and toxic (Johnson et al., 2000) pollutants), stream
biota (Kennen, 1999; Coles et al., 2004), stream habitat
(Booth and Jackson, 1997; Booth et al., 2002), and the
physical characteristics of streams (Dunne and Leopold,
1978; U.S. Environmental Protection Agency, 1997).

Investigating the relation among basin characteristics,
including imperviousness and the physical, chemical, and
biological effects in streams requires quantitative informa-
tion about basin characteristics and environmental responses
that can be linked to these characteristics (McMahon and
Cuffney, 2000). Several protocols have been developed and
widely implemented for characterizing stream response to
human activities (e.g., stream chemistry (Shelton, 1994),
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stream biota (Barbour et al., 1999; Moulton et al., 2002), and
stream habitat (Fitzpatrick et al., 1998)). These data com-
monly are collected at a number of scales as part of local
(Krug and Goddard, 1986), state (Davis and Simon, 1995;
Yoder, 1995) and federal (U.S. Geological Survey, 2002c)
water quality investigations. The widespread availability of
relatively large-scale, mapped digital databases has simpli-
fied the development of extensive tables of basin characteris-
tics that can be used in studying the association between
terrestrial and aquatic environments (Van Sickle, 2003).

A direct study of the effects of impervious surface on
water quality, however, is difficult because accurate meas-
urement or estimation of impervious surface is time consum-
ing and costly (Stankowski, 1972; Prisloe et al., 2000;
Slonecker and Tilley, 2004). The most accurate measures of
imperviousness can be obtained from ground-based measure-
ments or by digitizing impervious areas from very large-scale
planimetric tax maps (Center for Watershed Protection,
1998). Relatively accurate impervious surface measurements
also can be made by interpreting impervious surface area
from aerial photographs or digital orthophotos and digitizing
the information into a geographic information system
(Sleavin, 1999). Capturing impervious surface data using
these methods, however, is labor intensive and impractical
for investigations where a study may have a cumulative area
of hundreds or thousands of square kilometers.

Estimates of imperviousness in a watershed also can be
developed by using models that estimate impervious surface
as a function of other spatial data available for an area of
interest. Complex models may be used to estimate impervious
surface from satellite remote-sensing data. The Landsat
Thematic Mapper data are being used at the U.S. Geological
Survey’s (USGS) Earth Resources Observation Systems (EROS)
Data Center to quantify impervious surfaces as a continuous
variable using multi-sensor and multi-source data in a
regression tree model (Yang et al., 2003). Civco and Hurd
(1997) describe the use of high-resolution spatial data, such as
digital orthophotos, to train neural network models, which
are used with remotely sensed data to estimate impervious
surface information for large areas. Perhaps the most impor-
tant drawback in the use of satellite remote-sensing-based
impervious surface estimates is the necessity for a great deal
of expertise to develop and evaluate these frameworks.

A simpler, model-based approach for estimating impervi-
ous surface involves the use of land-cover data in conjunc-
tion with impervious surface coefficients (Schueler, 1994;
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Center for Watershed Protection, 1998; Sleavin, 1999;
Jennings et al., 2004). For example, if there are three land-
cover classes represented in a watershed, the proportion of a
watershed covered by impervious surface is estimated as:

IS � (IS1 * Area1 � IS2 * Area2 � IS3 * Area3)/
(Area1 � Area2 � Area3) (1)

where IS � impervious surface of a drainage basin (propor-
tion of total watershed area); ISi � impervious surface
coefficient for land-cover class i (proportion of land-cover
area for land-cover type i that is impervious; domain ranges
from 0–1); and Areai � area of land-cover class i in the
watershed. Coefficients specific to each of the land-cover
classes in the spatial dataset (e.g., high-density urban or
deciduous forest) may be obtained from the literature and
applied to the area of each land-cover type in each study
drainage basin to estimate the percentage of the basin area
that is impervious.

If land-cover data are available for a study area, a
coefficient-based impervious surface modeling approach is
relatively straightforward and quick to implement. Impervi-
ous surface estimates using this approach, however, may be
biased and imprecise for several reasons: (a) a review of the
literature suggests a high degree of variability in impervious
surface coefficients associated with land-cover classes;
(b) land-cover specific coefficients that account for the
physical and hydroclimatic conditions of a study area of
interest may not be available; (c) it may not be possible to
identify coefficients that match the land-cover categories in
a particular land-cover classification; and (d) the land-cover
classification may contain errors. For example, an accuracy
assessment of the NLCD completed for the eastern United
States indicates that the user accuracy of the general (Level I)
developed land-cover class is 74 percent, and the user
accuracy of the three more detailed (Level II) developed
land-cover classes is 61 percent for low-density residential
land-cover, 40 percent for high-density residential land-cover,
and 48 percent for commercial/industrial/transportation
land-cover (Zhu et al., 2000; Vogelmann et al., 2001; Yang
et al., 2001; Stehman et al., 2003; Stehman et al., 2003;
Wickham et al., 2003). These relatively low classification
accuracy rates indicate a substantial amount of confusion,
or misclassification, between the developed and other
land-cover classes. Such misclassifications introduce error
into models that use developed land-cover area estimates,
including models of impervious surface. Because adverse
effects of imperviousness can occur when a relatively small
proportion of watershed area is impervious, even small
biases or inaccuracies in estimating watershed impervious
surface can limit the ability to anticipate and manage
impervious-related effects.

The overall goal of the investigation reported here is to
evaluate the effects of land-cover misclassification on models
that use NLCD to predict impervious surface. The context for
the study is an investigation in coastal New England of the
relation between factors associated with urbanization, includ-
ing impervious surface, and the physical, chemical, and
biological aspects of water quality (Coles et al., 2004). The
New England study, conducted under the auspices of the USGS
National Water-Quality Assessment (NAWQA) Program, exam-
ined the effects of a gradient of urban-development intensity
on stream ecology in 32 watersheds in the Gulf of Maine
ecoregion in southern New England (Figure 1; McMahon and
Cuffney, 2000; U.S. Geological Survey, 2003b). Four impervi-
ous surface models, described below and based on Equation 1,
were used to assess a procedure for adjusting the NLCD to
account for misclassification and determine the relative
importance of the NLCD classes in predicting impervious
surface area.

The evaluation focuses on three questions:

1. What are the results of adjusting land-cover area in a
watershed to reflect accuracy-assessment information?

2. Does explicit adjustment of land-cover values used in
impervious surface models to account for land-cover
classification error rates result in meaningful improvements
of impervious surface predictions?

3. Do modeled impervious surface values have a stronger
association with measures of stream ecological conditions
than other measures of urbanization?

Methods
Four coefficient-based models for predicting impervious
surface area were evaluated against measured impervious
surface values at 55 study sites to assess the effect of account-
ing for classification error. The models, based on the approach
of Equation 1, use adjusted and unadjusted land-cover for
both Level I and Level II NLCD and literature review-derived
impervious surface (Table 1). Models were used to predict
impervious surface in the 32 New England study watersheds,
and the resulting impervious surface estimates were compared
with stream ecological conditions.

Measuring Impervious Surface Data
All models were assessed using impervious surface data
measured from digital orthophotos (1-meter resolution) at
55 study sites, each having an area of 0.5 km � 0.5 km
(Figure 1). These 55 study sites were selected to meet
several study goals. In addition to being used to develop
the impervious surface models, digital orthophoto data were
needed for training purposes in 4 of the 32 study water-
sheds (Assabet, Sudbury, Wading, and Saugus Rivers shown
in Figure 1) where satellite data were used in a separate
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Figure 1. New England impervious surface study area.



investigation of several image classification approaches.
Because of the dual objectives of supporting the image
classification research at the four basins and of focusing
on modeling impervious surface, it was determined that
approximately 30 percent of the 55 impervious surface
study sites would be distributed among the four study
watersheds, and that at least half of the study sites would
be composed predominantly of developed land.

The site selection process began by creating a grid of
0.5 km � 0.5 km cells for the Gulf of Maine ecoregion,
overlaying this grid onto a map that included both land-
cover and the four study basins, and determining the
dominant land-cover type within each grid cell. The ecore-
gion was then stratified into five sub-regions composed
of the four NECB study basins and the rest of the Gulf
of Maine ecoregion; small areas without existing digital
orthophotos, primarily in Maine and New Hampshire, were
excluded from consideration. The Assabet, Sudbury, and
Wading River watersheds each were allocated two predomi-
nantly developed study sites (i.e., study sites where the
land-cover is predominantly developed), two forested sites,
and one agricultural site; the Saugus River basin, which
is largely developed, was allocated as three developed
and one forested site. In the Gulf of Maine sub-region,
18 sites were predominantly developed land, and nine
sites each were predominantly forested and agricultural
land (Table 2).

Every 0.5 km � 0.5 km cell in each sub-region was
assigned a unique number, and a sampling period was
determined by dividing the total number of cells in the
region by the number of cells to be selected in the random
sample (e.g., for the Wading River, there are 199 cells and
5 cells to be sampled; thus, a sampling period of 40 cells).
For the four watersheds, a random sequence of desired land-
cover types was generated (e.g., for the Wading River, the
sequence was Developed-Forested-Developed-Forested-
Agriculture). A random grid number was generated (less
than or equal to the period) as a starting location. If the cell
corresponding to this number was composed of the desired
land-cover type (e.g., D for the first cell to be selected for
the Wading River watershed), then the cell was selected.
If not, then the closest cell with the desired land-cover
type was selected. From this location, the cell located one
sampling period away was identified, and the closest cell
with the next desired land-cover was selected (e.g., F in the
Wading example). This continued until all sites had been
selected. For the Gulf of Maine subregion, the sampling
periods for each land-cover type were 2,220 cells for devel-
oped land and 4,444 cells for agricultural and forested land.
Three random grid values less than or equal to 2,220 cells
were generated, with agriculture assigned to the first value,
developed land to the second value, and forested land to the
third value. Sampling proceeded as above, but independ-
ently for each land-cover type.

Once the 55 study sites were selected, impervious surface
area within each cell was digitized with a geographic infor-
mation system (GIS) using black and white digital orthophotos
that were taken in 1995 (Mike Altshul, University of Con-
necticut, written communication, December 2001). The
measured impervious surface area for each site was saved
for further analysis.

Adjusting Land-cover Estimates Using Accuracy Assessment Information
A land-cover accuracy assessment is based on comparisons
between the land-cover designation in the classification at
each location and the actual land-cover. Reference data can
be developed either from a large-scale source of actual
land-cover information, such as an aerial photograph or
from an onsite visit. Accuracy assessment results typically
are reported in an error matrix, with columns representing
the amount of land at the sample sites associated with the
true land-cover type, as determined from ground truth or
reference data, and rows indicating how the land at the
sample sites was labeled in the land-cover classification
(Congalton, 1991). The error matrix can be used to estimate
producer’s accuracy, which refers to the proportion of total
ground-truth sites known to belong to class X that are
correctly classified in the map product, and user’s accu-
racy, which refers to the proportion of ground-truth sites
mapped as X that actually belong to class X (McGwire and
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TABLE 1. GENERAL (LEVEL I) AND DETAILED (LEVEL II) 
LAND-COVER CLASSES IN THE GULF OF MAINE ECOREGION FROM

NATIONAL LAND-COVER DATA (VOGELMANN ET AL., 2001)

Impervious-Surface
Coefficients (based on

literature review)
Land Area (%)

Standard in the Gulf of
Mean Deviation Maine Ecoregion

Level I land-cover
Developed 0.41 0.25 21
Barren 0.21 0.19 <1
Forest 0.02 0.02 59
Shrubland 0.02 0.01 <1
Agricultural 0.05 0.03 8
Wetland 0.02 0.02 7
Level II land-cover
Low density residential 0.16 0.07 15
High density residential 0.39 0.15 2
comm./industrial 0.60 0.26 5
Bare rock 0.21 0.19 <1
Quarries 0.21 0.19 <1
Transitional 0.21 0.19 <1
Deciduous forest 0.03 0.02 29
Evergreen forest 0.02 0.01 11
Mixed forest 0.05 0.11 19
Deciduous shrub 0.02 0.01 <1
Pasture 0.05 0.03 2
Row crops 0.04 0.04 5
Urban/recreational grass 0.05 0.03 2
Woody wetland 0.02 0.01 5
Herbaceous wetland 0.02 0.01 2

(Notes: Impervious surface values for wetlands are assumed equal to
literature values for forest (Level I) and deciduous forests (Level II).
Literature review includes Stankowski, 1972; Dunne and Leopold,
1978; Northern Virginia Planning District Commission, 1980; U.S.
Department of Agriculture, 1986; Bedient and Huber, 1988; Aqua
Terra Consultants, 1994; Kluitneberg, 1994; Schueler, 1994; City of
Olympia Public Works Department, 1995; Center for Watershed
Protection, 1998.)

TABLE 2. DOMINANT LAND-COVER TYPES IN RANDOMLY SELECTED

IMPERVIOUS SURFACE STUDY SITES, BY SUBREGION

Dominant Land-Cover

Subregion Developed Forested Agricultural Total

Assebet River 2 2 1 5
Sudbury River 2 2 1 5
Wading River 2 2 1 5
Sudbury River 3 1 4
Rest of Gulf of 18 9 9 36

Maine ecoregion
Total 27 16 12 55



Fisher, 2001). Because of the focus of applying NLCD in
impervious surface modeling, the primary interest in this
study is user’s accuracy.

A number of methods can be used to adjust land-cover
area estimates using information about classification accuracy
(Card, 1982; Prisley and Smith, 1987; Hay, 1988; Czaplewski
and Catts, 1992; Buckland and Elston, 1994; Hess and Bay,
1997). Following the procedure described in Prisley and
Smith (1987) and Hess and Bay (1997), an adjusted land-
cover estimate for an area (e.g., a study site or watershed),
represented in vector W, can be obtained by multiplying
the original land-cover data, represented by vector V, by
the user-probability matrix, U, as indicated in the following
equation:

WT � VTU. (2)

This calculation adjusts the pixel count based on an estimate
of the number of misclassified pixels in a category (i.e.,
provided by the user probability matrix) and apportions
the pixels that were confused in the error matrix to other
categories. If the error matrix reflects the expected distribu-
tion of misclassifications, the adjusted land-cover estimates
can be considered a more accurate representation of the site
conditions than the unadjusted scores (Prisley and Smith,
1987).

An example of this adjustment calculation was pre-
sented in Hess and Bay (1997). The original classified land-
cover area was composed of land-cover A (27,090 cells) and
B (20,910 cells). The corrected scene was calculated as the
product of a transposed vector of the original land-cover
data and the user-probability matrix, or:

.

The user-probability matrix indicates that a relatively large
proportion of pixels classified as type B are actually type A;
this misclassification pattern is reflected in the adjustment,
in which additional land area is apportioned to land-cover
A from the area of land-cover B. The total land area, after
adjustment, remains the same.

A simulation approach can be used to determine the
sensitivity of land-cover adjustments in this example to
variations in the original land-cover composition and
classification accuracy. The amount of land-cover A in the
watershed is varied, in increments of 2,000 cells, between
2,000 and 48,000 cells. The amounts of land-cover B are
varied accordingly so that the total watershed area remains
48,000 cells. Nine scenarios of land-cover classification
accuracy are considered, with land-cover classes A and B
having varying combinations of low (0.50), medium (0.75),
or high (0.90) user accuracy.

By focusing on land-cover A, several patterns can be
perceived in the results of the simulation (Figure 2). When the
original (i.e., unadjusted) value for land-cover A is low (e.g.,
less than 10,000 cells), the difference between the adjusted
and unadjusted value for land-cover A is always positive
regardless of the accuracy of the classification for category
A or B; that is, the adjustment process results in a larger
amount of land-cover A. As the original amount of land-cover

User-probability matrix

.904            .096

.292            .708
�

Original land-cover data
  A               B

   27,090        20,910

�

�

Adjusted data
A          B

[30,595     17,405]

A becomes larger, less gain is derived from the adjustment.
Beyond a certain original magnitude, the adjustment becomes
negative, resulting in the adjusted value for land-cover A
being smaller than the original value.

While this pattern holds, regardless of the classification
accuracy scenarios, the relative classification accuracies
of A and B have an effect on the slope of the line that describes
the transition between gaining and losing land in the adjust-
ment process and on the location along the horizontal axis,
representing zero percent adjustment, when the adjustment
changes from positive to negative. When the classification
accuracy for land-cover B is low (i.e., scenarios 1, 4, 7), the
positive adjustment in the amount of land-cover A is always
larger than when the accuracy of land-cover B is medium or
high. The greater degree of confusion between classifying a
cell as A or B results in the transfer of a larger amount of land
classified originally as B to A in the adjustment process. In
addition, when the classification accuracy for land-cover B is
low, the adjustments in favor of land-cover A continue over a
larger range of original values for class A. That is, when the
classification accuracies for B are relatively low, adjustments
based on the user probability matrix favor class A, even at
relatively high original levels of class A.

Evaluating Whether Adjustment Improves Model Results
Equation 1 was used to predict impervious surface at
the 55 study sites under four modeling scenarios. Mean
literature-derived impervious surface coefficient values
for each land-cover category were used in Equation 1
(Table 1). Models were distinguished by (a) the aggregation
level of the land-cover data used (Level I or Level II), and
(b) whether the original or adjusted land-cover data were
used. Land-cover adjustments were made using original
NLCD data for each study site and the user probability
matrices (Yang et al., 2001; Table 3). The user probability
matrices for the NLCD Level I and II data, derived for NLCD
data for the eastern United States, were assumed to be
representative of classification accuracy conditions at the
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Figure 2. Effect of varying land-cover composition and
classification accuracy for a hypothetical watershed in
determining the adjustment percentages in land-cover
composition.



55 study sites; ecological fallacy issues associated with the
application of aggregate data to individual cases are not
obviated by this assumption, but the assumption was
deemed reasonable. Impervious surface predictions from
each of the four scenarios were compared with the meas-
ured impervious surface data using several approaches.

The Wilcoxon signed-rank test was used to test whether
the median differences between paired measured and
predicted impervious surface areas at the 55 study sites
under the four modeling scenarios were equal to zero (SAS,
Incorporated, 1990; Helsel and Hirsch, 1992). Correlation
coefficients, and the modeling efficiency coefficient (MEC)
(Reckhow et al., 1990; Stow et al., 2003) also were used to
evaluate the performance of the impervious surface models,
inclusive. The correlation coefficient is a measure of the
tendency of model predictions and the measured data to
vary together linearly. A high correlation value, however,
may mask a shift in the mean of the measured and predicted
values, which may vary together, but the actual values may
not match well. The MEC measures the prediction accuracy
of a model relative to the mean of the measurements. The
MEC is calculated by dividing the RMSE by the variance of
the measured values and subtracting this quantity from one.
A value near one indicates a close match between predicted
and measured values and a value of zero indicates that the
model predicts individual measured values no better than the
mean of the measured impervious surface values. Finally,
graphical evidence was used to examine the relation between
observed and predicted impervious surface values under the
four modeling scenarios.

Association of Impervious Surface Estimates and Stream Conditions
The four modeling approaches evaluated at the 55 study sites
were used to estimate impervious surface data in the 32 New
England study watersheds. Impervious surface estimates for
each watershed then were compared with watershed-specific
measures of stream ecological condition. Aquatic inverte-
brates were collected at the 32 NECB sites in August 2000
using both quantitative and qualitative methods (Coles et al.,
2004). Correspondence analysis was used to ordinate inverte-
brate community data, allowing sites to be differentiated
based on the patterns and composition of the community
data. Values from the first axis of this ordination, called site
scores, represent the differences in community structure
among the 32 sites with scores scaled so that high values
represented good water-quality conditions. Site scores were
correlated with the impervious surface values predicted from
the four models to examine the relation between impervious
surface area and invertebrate communities. For comparison,
correlations also were derived between the site scores and
several other measures of basin development, including the
amount of developed land, 1999 population density, and road
density (McMahon and Cuffney, 2000). It is expected that
water-quality conditions, as measured by the site scores, will
be inversely related to all of these development measures.

Results and Discussion
The Results of Adjusting Land-cover Using Accuracy Assessment
Information
The results of applying the user probability matrix from
published accuracy assessments to adjust the original Level I
and Level II land-cover data for the 55 study sites are largely
consistent with the land-cover adjustment example presented
earlier, with the largest land-cover adjustments occurring in
land-cover classes with the lowest classification accuracy.
Across the 55 study sites, the land-cover adjustment proce-
dure results in a decrease in the area of the two Level I NLCD
classes with the largest land areas, forested (mean area of
42 percent before adjustment, with a mean loss of 0.6 percent;
Table 4) and developed land (mean area of 33 percent before
adjustment, with a mean loss of 7 percent). The third largest
NLCD class, agriculture (mean area of 13 percent before
adjustment), had a mean increase in area of 3.7 percent
across the 55 sites. The pattern of adjustment losses for large
land-cover classes also occurs for most of the larger Level II
NLCD classes, including the low-density residential class
(mean area of 20.2 percent before adjustment with a mean
loss of 4.6 percent), the commercial/industrial class (mean
area of 10.9 percent before adjustment with a mean loss
of 3 percent), and the deciduous forest class (mean pre-
adjustment area of 25 percent and a mean adjustment loss of
7.1 percent). Although the mixed forest class has a relatively
large mean area across the 55 study sites (11.7 percent),
the adjustment process results in a mean gain in land area
of 4.7 percent.

The extent to which land-cover area is reallocated among
classes is affected by the classification accuracy as well as by
the relative amounts of each land-cover type within a study
site. The percentage of the original area at which the adjust-
ment becomes negative varies with the classification accuracy
of the three classes (Table 4; Figure 3). Level I developed
land-cover has the lowest user accuracy (74 percent), and
adjustments begin resulting in a loss of developed land area
when the area reaches about 10 percent. Agricultural land-
cover has a slightly higher user accuracy (77 percent) than
land classified as developed; land-cover adjustment results in
a loss of agricultural land area when agricultural land exceeds
25 percent. Finally, forested land, which has the highest user
accuracy (85 percent), does not begin losing land area in the
adjustment process until the original area exceeds 45 percent.
In addition, the mean loss of forested land (0.6 percent) is
smaller than would be expected given the generally large
amount of forested land at the study sites.

Similar results occurred for the Level II classes associated
with developed and forested land (Figure 4). At sites where
the original, unadjusted percentages of developed and forested
land are low, the adjustment procedure increases the areas.
The percentage of land-cover composition at which the
adjustment becomes negative is, once again, related to classifi-
cation accuracy. Adjustments remain positive for the land
classified as low-density residential (user accuracy � 0.61)
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TABLE 3. USER PROBABILITY MATRIX FOR LEVEL I NATIONAL LAND-COVER DATA (VOGELMANN ET AL., 2001; YANG ET AL., 2001)

Water Developed Barren Forested Shrub Agriculture Wetlands

Water 0.95 0.01 0.01 0.01 0.00 0.00 0.02
Developed 0.02 0.74 0.03 0.10 0.00 0.10 0.01
Barren 0.01 0.02 0.52 0.07 0.00 0.32 0.06
Forested 0.00 0.02 0.03 0.85 0.01 0.06 0.03
Shrub 0.00 0.00 0.15 0.05 0.80 0.00 0.00
Agriculture 0.01 0.06 0.03 0.11 0.00 0.77 0.01
Wetlands 0.02 0.01 0.04 0.10 0.00 0.04 0.78



across a greater range of original values (i.e., the intercept of
the zero axis is farther to the right) than for land classified as
high-density residential (user accuracy � 0.40) or commercial/
industrial (user accuracy � 0.48) land. Adjustments for mixed
forested land (user accuracy � 0.67) remain positive across a
greater range of original class percentages than for deciduous
(user accuracy � 0.60) and evergreen (user accuracy � 0.53)
forested land. The preferential adjustment pattern for mixed
forested land results in an average adjustment gain across
the 55 sites.

Adjusting land-cover using the user probability matrix
has two effects on impervious surface predictions (Table 5).
Median values for impervious surface predictions from
models using Level I NLCD (adjusted and unadjusted) are
larger than the median values predicted by using adjusted
or unadjusted Level II NLCD, and not significantly different
from the median value of the observed, or measured,
impervious surface values at these sites. Level I-based
median predictions are greater than predictions based on
Level II classes because of the distribution of Level II
developed land among the three Level II developed classes
and the relative size of the impervious surface coefficients
for Level I and II developed land. Level II developed land is
primarily low-density residential, which has a smaller mean
impervious surface coefficient (0.16 from Table 1) than the
Level I developed land class (0.41). The median value of
Level II predictions, adjusted and unadjusted, are larger than
the median value.

Median predicted impervious surface values generated
by models using unadjusted NLCD (Level I or Level II) are
larger than the median predicted values for models using
adjusted data (Table 5). The relatively low classification
accuracy associated with developed land-cover, and associ-
ated large downward adjustment in the in the amount of
developed land in many of the study sites (Figures 3 and 4),
and the relatively high impervious surface coefficient of
developed land together reduce the median predicted
impervious-surface value across the study sites after adjust-
ment. In the case of Level I data, the impervious surface
model using unadjusted data under-predicts (relative to the
models using adjusted data) up to an impervious surface
prediction from unadjusted models of approximately 0.10;
these are sites with low amounts of developed land and do
not lose much developed land in the adjustment procedure.
Beyond this point (i.e., for sites with greater amounts of
developed land before adjustment), the losses of developed
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TABLE 4. COMPARISON OF MEAN VALUE OF MEASURED LAND-COVER DATA, USER ACCURACY, 
AND PERCENT CHANGE FROM ORIGINAL VALUE AFTER USER PROBABILITY ADJUSTMENT PROCESS

FOR LEVEL I AND LEVEL II NATIONAL LAND-COVER DATA (NLCD; VOGELMANN ET AL., 2001) 
ACROSS 55 IMPERVIOUS SURFACE STUDY SITES

Original Land-Cover Adjusted Land-Cover
Data (mean % over Data (% change from

55 study sites) User Accuracy original values)

Level I
Developed 33.3 0.74 –7.1
Barren 0.9 0.52 2.7
Forested 41.9 0.85 –0.6
Shrub 0.0 0.80 0.5
Agricultural 13.0 0.77 3.7
Wetland 9.0 0.78 –0.2
Level II
Low-density residential 20.2 0.61 –4.6
High-density residential 2.1 0.40 0.0
Commercial/industrial 10.9 0.48 –3.0
Bare rock 0.2 0.47 1.2
Quarries 0.1 0.29 0.1
Transitional 0.6 0.45 2.2
Deciduous forest 25.0 0.60 –7.1
Evergreen forest 5.1 0.53 1.8
Mixed forest 11.7 0.67 4.7
Deciduous shrub 0.0 0.77 0.5
Pasture 1.4 0.33 2.4
Row crops 5.2 0.49 –0.2
Urban grass 6.4 0.61 2.0
Woody wetland 5.7 0.61 –0.8
Herbaceous wetland 3.2 0.76 0.1

Figure 3. Effect of adjustment, with user-probability
matrix, of three major Level I National Land-Cover
Data (Vogelmann et al., 2001) land-cover categories
in 55 study sites in the Gulf of Maine ecoregion.



land from the adjustment process are large enough that
results from the unadjusted model predictions are always
larger than those from the adjusted models. A similar
pattern occurs in models using Level II NLCD. Beyond an
impervious surface prediction from unadjusted models of
approximately 0.15, large losses of developed land occur in
the adjustment process, particularly from the commercial/
industrial class, which has a high impervious surface
coefficient.

Results of the Adjustment to Improve Impervious Surface Predictions
Multiple lines of evidence indicate that using error matrix
information to adjust land-cover data used in impervious
surface models does not substantially improve impervious
surface predictions. The resolution of the land-cover data
(Level I and Level II) is more important in predicting imper-
vious surface accurately than whether the land-cover data
have been adjusted using information in the error matrix.

Results from the Wilcoxon signed-rank test (which
hypothesizes that the median difference between paired
measured and predicted impervious surface values is zero)
indicate that that there is no significant difference between
the measured and predicted impervious surface values
using either Level I adjusted or unadjusted data (Table 5;
� � 0.05); that is, regardless of whether the Level I NLCD

land is adjusted or not, the predictions based on Level I
NLCD are not significantly different from the measured
values. This finding is supported by the modeling efficiency
coefficient (MEC) results. The MEC measures how well a
model predicts relative to the mean of the measured data,
with values near one indicating a close match between
predicted and measured values. MEC values for the Level I
models are both relatively low, corroborating the Wilcoxon
results. Predictions from both the adjusted and unadjusted
Level II models are significantly different from the measured
impervious surface value.

If the median difference between measured and predicted
values is zero, data points in Figure 5 will lie along a 1:1 line
and the Lowess line (locally weighted scatter plot smoothing,
indicating the general trend in the relation among the data
points; Helsel and Hirsch, 1992) will be coincident with the
1:1 line. Data points associated with the Level I (unadjusted)
model are centered around this 1:1 line for predicted imper-
vious surface values less than approximately 0.15 (correspon-
ding with sites that are less than approximately 20 percent
developed land; Figure 5a). For impervious surface values
ranging from approximately 0.15 to 0.25, the model using
unadjusted Level I data over-predicts relative to measured
values; beyond impervious surface values of 0.25 the model
consistently under-predicts relative to measured values. The
overall pattern is similar for results from the model using
adjusted Level I NLCD data (Figure 5b); the adjustment process
reduces the amount of developed land and removes the area
of over-prediction. Except at very low impervious surface
levels, the model using unadjusted Level II data generally
under-predicts relative to measured impervious surface values
(Figure 5c). The adjustment process with Level II results in a
similar pattern of model over-prediction as with the Level I
data (Figure 5d).

These results reflect the effect of adjusting for classifi-
cation error. When the percentages of developed land-
cover in the study sites are low, the adjustment process
does not introduce a large bias in the predictions relative
to the measured values. As the amount of developed land
increases, impervious surface predictions resulting from
adjusted land-cover become increasingly lower than from
the measured values. When amounts of developed land are
greater, adjustments associated with land-cover misclassifi-
cation become increasingly negative and predicted imper-
vious surface values decrease. Points associated with the
Level II model begin to diverge from the 1:1 line at lower
impervious surface values than with the Level I data,
reflecting the high classification-error rates associated with
the Level II developed classes.

The Relation Between Impervious Surface and Stream Ecological
Conditions
All four models were used to predict impervious surface
areas at 32 New England watersheds used in the NAWQA
water quality study. Modeled impervious surface values
from all four models have a strong negative correlation with
invertebrate condition site scores, indicating that as the
amount of impervious surface increases, stream ecological
conditions, as measured by invertebrate condition site
scores, worsen (Table 6). The strength of this relation is
similar regardless of the impervious surface model; again,
the adjustment process does not seem to provide valuable
additional information. The correlation between imper-
viousness and stream ecological condition has a similar
magnitude and direction as the correlations between stream
condition and other measures of urbanization. None of
these development measures is clearly superior to the
others in the strength of its association with this water
quality measure.
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Figure 4. Effect of adjustment, with user-probability
matrix, of National Land-Cover Data (NLCD; Vogelmann
et al., 2001) (a) developed, and (b) forested Level II
land-cover categories in 55 study areas.
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Figure 5. Measured and predicted impervious surface values at 55 New England study sites. Predictions
are based on models using (a) unadjusted National Land-Cover Data (NLCD; Vogelmann et al., 2001) Level I
data, (b) adjusted Level I NLCD, (c) unadjusted NLCD Level II data, and (d) adjusted NLCD Level II data.

TABLE 5. IMPERVIOUS SURFACE MODEL RESULTS BASED ON LEVEL I AND II
NATIONAL LAND-COVER DATA (NLCD; VOGELMANN ET AL., 2001) IN 55 STUDY SITES

IN THE NEW ENGLAND STUDY AREA: (I) MEASURED VALUES; (II) PREDICTED VALUES;
AND (III) VALIDATION RESULTS

(i) Observed Impervious-surface values at the 55 study sites
median 0.106
mean 0.166

(ii) Summary of predicted impervious surface values at the 55 study sites
Predicted impervious surface values

NLCD NLCD data Median impervious Mean impervious
resolution used in model surface value surface value
Level I Unadjusted 0.125 0.157

Adjusted 0.117 0.137
Level II Unadjusted 0.094 0.131

Adjusted 0.099 0.118

(iii) Validation results comparing predicted and observed impervious
surface values

Wilcoxen sign Modeling
NLCD NLCD rank test Correlation efficiency
resolution used in model (p-value) coefficient (MEC)
Level I Unadjusted 0.75 0.78 0.59

Adjusted 0.68 0.79 0.49
Level II Unadjusted 0.01 0.92 0.74

Adjusted 0.03 0.93 0.49
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Conclusions
The evaluation of consequences of land-cover misclassifica-
tion focused on three questions:

1. What are the results of adjusting land-cover area within a
watershed to reflect accuracy-assessment information?

2. Does explicit adjustment of land-cover values used in
impervious surface models to account for land-cover classi-
fication error rates result in meaningful improvements of
impervious surface predictions over models that do not
make these adjustments?

3. Do modeled impervious surface values have a stronger
association with measures of stream ecological conditions
than other measures of urbanization?

In the case examined above, when the original (i.e.,
unadjusted) amount of a specific land-cover is low, the
difference between the adjusted and unadjusted value is
always positive regardless of the classification accuracy;
that is, the adjustment process results in a larger amount of
the specific land-cover type. As the original area of the
specific land-cover becomes larger, there is less gain from
the adjustment; beyond a certain original magnitude, the
adjustment becomes negative. Relative classification accu-
racy affects the point at which the adjustment changes from
a gain in land-cover area to a loss. For Level I developed
land-cover, which has a relatively low classification accu-
racy, adjustments begin resulting in a loss of developed
land area when the amount of developed land is approxi-
mately 10 percent, much sooner than for the more accu-
rately classified land-cover types, such as forest (beginning
at 45 percent) and agriculture (beginning at 25 percent).
A similar pattern occurs for Level II land classes.

As noted by DeFries and Los (1999), the consequences
of adjusting for misclassification errors are most meaning-
fully viewed in the context of the land-cover application.
Given an interest in improving impervious surface predic-
tions and using impervious surface estimates to understand
stream ecological condition, the model validation results
indicate that using error-matrix information to adjust 1992
NLCD land-cover values used in impervious surface models
does not substantially improve impervious surface predic-
tions. In fact, the resolution of the land-cover data (Level I
and Level II) is more important in predicting impervious
surface accurately than whether the land-cover data have
been adjusted using information in the error matrix. Level I
NLCD is preferable to the other land-cover options for use in
models of impervious surface. This result is tied to the
lower classification error rates for the Level I NLCD. As
indicated by the results in Figure 5, the lower classification-
error rate for Level I developed land relative to Level II

TABLE 6. CORRELATION BETWEEN INVERTEBRATE CONDITION ORDINATION

SITE SCORES (COLES ET AL., 2004), MODELED IMPERVIOUS SURFACE

PREDICTIONS USING LEVEL I AND II NATIONAL LAND-COVER DATA

(NLCD; VOGELMANN ET AL., 2001) AND OTHER MEASURES OF

DEVELOPMENT IN 32 NEW ENGLAND WATERSHEDS

Invertebrate Condition 
Site Scores

Modeled impervious surface
NLCD Level I, unadjusted –0.87
NLCD Level I, adjusted –0.87
NLCD Level II, unadjusted –0.87
NLCD Level II, adjusted –0.88
Other measures of developmental intensity
Level I developed land cover (%) –0.87
1999 population density –0.85
Road density –0.89

developed land results in a closer fit between predicted and
measured impervious surface rates over a larger range of
impervious surface values (and amounts of developed land-
cover) than is the case for the Level II models.

A comparison of the association between modeled
impervious surface values, other measures of urbanization,
and ecological measures of stream condition indicates that
there is little difference between imperviousness based on
adjusted or unadjusted NLCD and other measures of urbaniza-
tion in the strength of association with invertebrate condition
site scores. All measures of urbanization have a negative
association with water quality, as measured by invertebrate
abundance.

In the context of developing impervious surface estimates
and using these estimates to understand stream ecological
conditions, it does not appear that the consequences of
making the adjustments warrant the effort. Nevertheless, this
evaluation exercise provides useful information. Given the
relatively low classification accuracy of the Level I and II
developed land data, the evaluation indicates that regardless
of whether adjustment is done, the Level I NLCD are prefer-
able to Level II NLCD for impervious surface models. Evalua-
tion of land-cover adjustment based on the accuracy assess-
ment also improves understanding of the consequences of
classification accuracy for land-cover classes important in a
modeling exercise. The loss of land-cover area owing to the
adjustment process happens most quickly, and the average
amount of change is higher when the classification accuracy
is low. This indicates that classification accuracy is particu-
larly important for land-cover classes that are important
factors in modeling, such as developed land-cover for models
of impervious surface.

Acknowledgments
The author is extremely grateful to Julie McIntyre and Steve
Stehman for substantial assistance in conceptualizing the
sampling approach and implementation of the land-cover
adjustment procedure. Mike Altshul developed the measured
impervious data at the 55 study sites, and Dan Civco and
Sandy Prisloe provided guidance in the early stages of the
project. Insights provided by three anonymous reviewers
have substantially strengthened the paper.

References
American Planning Association, 2002. Policy Guide on Water

Resources Management, URL: http://www.planning.org/
policyguides/waterresources.htm (last date accessed:
15 August 2007).

Aqua Terra Consultants, 1994. Chambers Watershed HSPF Calibration,
(D.C. Beyerlein and J.T. Brascher, editors), Thurston County Storm
and Surface Water Program, Everett, Washington.

Arnold, C.L., and C.J. Gibbons, 1996. Impervious surface coverage:
The emergence of a key environmental indicator, Journal of the
American Planning Association, 62(2):243–258.

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling, 1999.
Rapid Bioassessment Protocols for Use in Streams and Wade-
able Rivers: Periphyton, Benthic Macroinvertebrates, and Fish,
U.S. Environmental Protection Agency, Office of Water, EPA
841-B-99–002, Washington, D.C.

Barnes, K.B., J.M. Morgan, III, and M.C. Roberge, 2000. Impervious
surfaces and the quality of natural and build environments,
Synergy Project – Chesapeake Bay and Mid-Atlantic From
Space, Towson University, Department of Geography and
Environmental Planning, URL: http://chesapeake.towson.edu/
landscape/impervious, Towson, Maryland (last date accessed:
15 August 2007).

Bedient, P.B., and W.C. Huber, 1988. Hydrology and Floodplain
Analysis, Addison-Wesley Publishing, Reading, Massachusetts.



Booth, D.B., D. Hartley, and R. Jackson, 2002. Forest cover, impervious
surface area, and the mitigation of stormwater impacts, Journal of
the American Water Resources Association, 38(3):835–845.

Booth, D.B., and C.R. Jackson, 1997. Urbanization of aquatic systems:
Degradation thresholds, stormwater detection, and the limits of
mitigation, Journal of the American Water Resources Association,
33(5):1077–1090.

Buckland, S.T., and D.A. Elston, 1994. Use of groundtruth data to
correct land-cover area estimates from remotely sensed data,
International Journal of Remote Sensing, 15(6):1273–1282.

Card, D.H., 1982. Using known map category marginal frequencies to
improve estimates of thematic map accuracy, Photogrammetric
Engineering & Remote Sensing, 48(3):431–439.

Center for Watershed Protection, 1998. Rapid Watershed Planning
Handbook: A Comprehensive Guide for Managing Urbanizing
Watersheds, Ellicott City, Maryland.

City of Olympia Public Works Department, 1995. Impervious Surface
Reduction Study, Olympia, Washington.

Civco, D.L., and J.D. Hurd, 1997. Impervious surface mapping for
the state of Connecticut, Proceedings of the 1997 ASPRS/ACSM
Annual Convention, Seattle, Washington, 3:124–135.

Climate Source, 2003. Climate data where you need it, URL:
http://www.climatesource.com/ (last date accessed: 15 August
2007).

Coles, J.F., T.F. Cuffney, Gerard McMahon, and K.M. Beaulieu,
2004. The Effects of Urbanization on the Biological, Physical,
and Chemical Characteristics of Coastal New England Streams,
U.S. Geological Survey Professional Paper 1695, 47 p.

Congalton, R.G., 1991. A review of assessing the accuracy of
classifications of remotely sensed data, Remote Sensing of
Environment, 37(1):35–46.

Czaplewski, R.L., and G.P. Catts, 1992. Calibration of remotely
sensed proportion or area estimates for misclassification error,
Remote Sensing of Environment, 39:29–43.

Davis, W.S., and T.P. Simon, 1995. Biological Assessment and Criteria:
Tools for Water Resource Planning and Decision Making, Lewis
Publishers, Boca Raton, Florida.

DeFries, R.S., and S.O. Los, 1999. Implications of land-cover mis-
classification for parameter estimates in global land-surface
models: An example from the Simple Biosphere Model (SiB2),
Photogrammetric Engineering & Remote Sensing, 65(9):1083–1088.

Dunne, T., and L.B. Leopold, 1978. Water in Environmental Planning,
W.H. Freeman and Company, San Francisco, California.

Fitzpatrick, F.A., I.R. Waite, P.J. D’Arconte, M.R. Meador, M.A.
Maupin, and M.E. Gurtz, 1998. Revised Methods for Character-
izing Stream Habitat in the National Water-Quality Assessment
Program, U.S. Geological Survey Water Resources Investigations
Report 98-4052, Reston, Virginia.

Frenzel, S.A., and C.S. Couvillion, 2002. Fecal-indicator bacteria in
streams along a gradient of residential development, Journal of
the American Water Resources Association, 38(1):265–273.

Hay, A.M., 1988. The derivation of global estimates from a confusion
matrix, International Journal of Remote Sensing, 9(8):1395–1398.

Helsel, D.R., and R.M. Hirsch, 1992. Statistical Methods in Water
Resources, Elsevier Publishers, Amsterdam, 522 p.

Hess, G.R., and J.M. Bay, 1997. Generating confidence intervals for
composition-based landscape indices, Landscape Ecology,
12:309–320.

Jennings, D.B., S.T. Jarnagin, and D.W. Ebert, 2004. A modeling
approach for estimating watershed impervious surface area from
National Land Cover Data 92, Photogrammetric Engineering &
Remote Sensing, 70(11):1295–1307.

Johnson, R., J.F. Pankow, D.A. Bender, C.V. Price, and J.S. Zogorski,
2000. MTBE-To what extent will past releases contaminate
community water supply wells?, Environmental Science &
Technology, 34(9):210A–217A.

Kennen, J.G., 1999. Relation of macroinvertebrate community
impairment to catchment characteristics in New Jersey
streams, Journal of the American Water Resources Association,
35(4):939–955.

1352 Decembe r 2007 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Kluitneberg, E., 1994. Determination of Impervious Surface Area
and Directly Connected Impervious Area, Memo for the Wayne
County Rouge Program Office, Detroit, Michigan.

Krug, W.R., and G.L. Goddard, 1986. Effects of Urbanization on
Streamflow, Sediment Loads, and Channel Morphology in Pleasant
Branch Basin near Middleton, Wisconsin, U.S. Geological Survey
Water Resources Research Investigations 85–4068.

McGwire, K.C., and P. Fisher, 2001. Spatially variable thematic
accuracy: Beyond the confusion matrix, Spatial Uncertainty in
Ecology, Implications for Remote Sensing and GIS Applications
(C.T. Hunsaker, M.A. Friedl, M.F. Goodschild, and T.J. Case,
editors), Springer, New York, pp. 308–329.

McMahon, G., J.D. Bales, J.F. Coles, E.M.P. Giddings, and H. Zappia,
2003. Use of stage data to characterize hydrologic conditions in
an urbanizing environment, Journal of the American Water
Resources Association. 39(6):1529–1546.

McMahon, G., and T.F. Cuffney, 2000. Quantifying urban intensity
in drainage basins for assessing stream ecological conditions,
Journal of the American Water Resources Association,
36(6):1247–1262.

Moulton, S.R. II, J.G. Kennen, R.M. Goldstein, and J.A. Hambrook,
2002. Revised Protocols for Sampling Algal, Invertebrate, and
Fish Communities as Part of the National Water-Quality
Assessment Program, U.S. Geological Survey Open-File Report
02-150, Reston, Virginia.

Northern Virginia Planning District Commission, 1980. Guidebook
for Screening Urban Nonpoint Pollution Management Strategies,
Metropolitan Washington Council of Governments, Falls
Church, Virginia.

Novotny, V., and G. Chesters, 1981. Handbook of Urban Nonpoint
Pollution: Sources and Management, Van Nostrand Reinhold
Company, New York.

Prisley, S.P., and J.L. Smith, 1987. Using classification error matrices to
improve the accuracy of weighted land-cover models, Photogram-
metric Engineering & Remote Sensing, 53(9):1259–1263.

Prisloe, M.P., L. Giannotti, and W.J. Sleavin, 2000. Determining
impervious surfaces for watershed modeling applications,
Proceedings of the 8th National Nonpoint Source Monitoring
Conference, 10–14 September, Hartford, Connecticut.

Reckhow, K.H., J.T. Clements, and R.C. Dodd, 1990. Statistical
evaluation of mechanistic water-quality models, Journal of
Environmental Engineering, 116(2):250–268.

SAS, Incorporated, 1990. SAS/STAT User’s Guide, Version 6, Cary,
North Carolina.

Schueler, Thomas, 1994. The importance of imperviousness, Water-
shed Protection Techniques, 1(3):100–111.

Shelton, L., 1994. Field Guide for Collecting and Processing Stream-
water Samples for the National Water-Quality Assessment
Program, U.S. Geological Survey Open-File Report 94–455,
URL: http://ca.water.usgs.gov/pnsp/pest.rep/sw-t.html, Sacra-
mento, California (last date accessed: 15 August 2007).

Sleavin, W.J., 1999. Measuring Impervious Surfaces in Connecticut
Using Planimetric GIS Data, Masters Thesis, University of
Connecticut, Storrs, Connecticut.

Spatial Climate Analysis Service, 2003. Spatial climate analysis service,
Oregon State University, URL: http://prism.oregonstate.edu/ (last
date accessed: 15 August 2007)

Slonecker, E.T., and J.S. Tilley, 2004. An evaluation of the individual
components and accuracies associated with the determination of
impervious area, GIScience and Remote Sensing, 41(2):165–184.

Stankowski, S.J., 1972. Population Density as an Indirect Indicator of
Urban and Suburban Land-Surface Modifications, U.S. Geological
Survey Professional Paper 800-B, Reston, Virginia, pp. B219–B224.

Stehman, S.V., T.L. Sohl, and T.R. Loveland, 2003. Statistical sampling
to characterize recent United States land-cover change, Remote
Sensing of Environment, 86(4):517–529.

Stehman, S.V., J.D Wickham, J.H. Smith, and L.Yang, 2003. Thematic
accuracy of the 1992 National Land-Cover Data for the eastern
United States: Statistical methodology and regional results,
Remote Sensing of Environment, 86(4):500–516.



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Decembe r  2007 1353

Stow, C.A., C. Roessler, M.E. Borsuk, J.D. Bowen, and K.H. Reckhow,
2003. Comparison of estuarine water quality models for total
maximum daily load development in the Neuse River estuary,
Journal of Water Resources Planning and Management,
129(4):307–314.

U.S. Department of Agriculture, 1986. Urban Hydrology for Small
Watersheds, Natural Resources Conservation Service Technical
Release 55, Washington, D.C.

U.S. Department of Agriculture, 1994. State Soil Geographic
(STATSGO) Data Base Data Use Information, U.S. Department
of Agriculture-Natural Resources Conservation Service
Miscellaneous Publication 1492.

U.S. Environmental Protection Agency, 1997. Urbanization and
Streams: Studies of Hydrologic Impacts, EPA841-R-97–009,
Washington, D.C.

U.S. Environmental Protection Agency, 2002. Water discharge permits
(Permit Compliance System), URL: http://www.epa.gov/enviro/
html/pcs/ (last date accessed: 15 August 2007).

U.S. Environmental Protection Agency, 2003. Toxic Release Inventory
(TRI) Program, URL: http://www.epa.gov/tri/tridata/tri01/
index.htm (last date accessed: 15 August 2007).

U.S. Geological Survey, 2002a. The National Elevation Dataset, URL:
http://ned.usgs.gov/ (last date accessed: 15 August 2007).

U.S. Geological Survey, 2002b. National Land-cover Characterization
Project, URL: http://landcover.usgs.gov/ (last date accessed:
15 August 2007).

U.S. Geological Survey, 2002c. National Water-Quality Assessment
Summary Reports, URL: http://water.usgs.gov/nawqa/
nawqa_sumr.html (last date accessed: 15 August 2007).

U.S. Geological Survey, 2003a. National Hydrography Dataset,
URL: http://nhd.usgs.gov/index.html (last date accessed:
15 August 2007).

U.S. Geological Survey, 2003b. National Water-Quality Assessment
Program, URL: http://water.usgs.gov/nawqa/ (last date accessed:
15 August 2007).

Van Sickle, J., 2003. Analyzing correlations between stream and
watershed attributes, Journal of the American Water Resources
Association, 39(3):717–726.

Vogelmann, J.E., S.M. Howard, L. Yang, C.R. Larson, B.K. Wylie,
and N. Van Driel, 2001. Completion of the 1990s National Land
Cover Data set for the conterminous United States from Landsat
Thematic Mapper data and ancillary data sources, Photogram-
metric Engineering & Remote Sensing, 67(6):650–652.

Yang, L., S.V. Stehman, J.H. Smith, and J.D. Wickham, 2001. Thematic
accuracy of MRLC land-cover for the eastern United States,
Remote Sensing of Environment, 76:418–422.

Yang, L., C. Huang, C.G. Homer, B.K. Wylie, and M.J. Coan, 2003.
An approach for mapping large-area impervious surfaces:
Synergistic use of Landsat 7 ETM� and high spatial resolution
imagery, Canadian Journal of Remote Sensing, 29(2):230–240.

Yoder, C., 1995. Biological criteria program development and
implementation in Ohio, Biological Assessment and Criteria:
Tools for Water Resource Planning and Decision Making
(W.S. Davis and T.P. Simon, editors), Lewis Publishers, Boca
Raton, Florida, pp. 109–144.

Zhu, Z., L. Yang, S.V. Stehman, and R.L. Czaplewski, 2000.
Accuracy assessment for the U.S. Geological Survey regional
land-cover mapping program: New York and New Jersey
Region, Photogrammetric Engineering & Remote Sensing,
66(12):1425–1435.

(Received 06 July 2005; accepted 28 November 2005; revised
05 May 2006)


